- 收听数
- 0
- 性别
- 保密
- 听众数
- 3
- 最后登录
- 2015-12-7
- QQ
- UID
- 10434
- 阅读权限
- 20
- 帖子
- 1432
- 精华
- 0
- 在线时间
- 193 小时
- 注册时间
- 2014-7-18
- 科研币
- 9
- 速递币
- 4174
- 娱乐币
- 7307
- 文献值
- 23
- 资源值
- 0
- 贡献值
- 0
|
通过过去几十年的研究,材料科学家了解到,数百万年来大自然通过把具有适当机械性能的材料纳米化,将其转化为新的、具有优异硬度、韧性和弹性的新材料。例如,在软体动物的壳中,硬脆的文石板像砖块一样叠加,并通过某种蛋白质砂浆粘合在一起,从而得到兼有弹性和硬度的珍珠母贝。
来自斯图加特大学材料科学研究所的Burghard和Joachim Bill团队以这种天然复合材料为模型进行了研究。他们与马普研究所智能系统方向和固态研究方向的同事一起,使用硬脆且的五氧化二钒陶瓷生产出了弹性优异的导电纸。
最初,科学家们是根据近20年来已知的固定程序,用水溶性钒盐来合成五氧化二钒纳米纤维。所得的纤维可以导电,这是其非比寻常的特点。这可能是由于其中的金属氧化物链对电子的束缚能力很弱,使其中电子可以自由移动。
一旦斯图加特的科学家们创造出必要的条件,导电纤维就可以聚集成具有良好弹性和强度的纸张。科学家们将纳米纤维分散在水中,薄薄的附在基底上,然后使水层膜在室温下干燥,接着在40℃下放置几小时,同时缓慢降低气候室中的湿度。这一缓慢过程使纤维能够整齐的平行聚集。最后,将薄膜在100和150℃下退火,这就生产出了透明的橙色纸,我们还可以通过改变纳米纤维溶液的数量来改变这些纸的厚度。
Burghard指出“这种纸既可以折又可以卷”。在可以折或卷这一方面,陶瓷纸甚至要优于它原有的自然模型。“尽管自然界中珍珠母贝存在于小的螺旋贝壳中,但这种生物矿物并不能像普通的纸那样折叠。”陶瓷纸不仅比珍珠母贝的弹性好,而且硬度也要好些。更重要的是,陶瓷纸能够导电。Burghard 补充道“然而,纤维中的导电性要远远优于纤维间的导电性。”
在特殊纳米结构中的硬质陶瓷和软水的结合使这种纸硬度高、强度大且可弯曲。这也使其具有较高的面向电导率以及较低的法向电导率。然而,导电性不仅是由沿纳米纤维方向移动的自由电子来传送,陶瓷间的水层中的离子也可以导电。
导电性和机械性能都随着含水量的改变而变化。通过对材料进行干燥和退火处理,科学家们移去了弱的结合水以使陶瓷纤维形成致密结构。由于这加强了纳米纤维间的结合,从而使陶瓷纸具有更高的硬度和刚度。
正如Burghard所说:“由于陶瓷纸具有优异的机械性能、良好的导电性和化学性能,使其具有广泛的应用。”例如,五氧化二钒纤维和片层中的离子可以结合在一起,这使陶瓷纸很适合用于电池中的电极材料中。Burghard解释说“由于陶瓷纸内部是规则均匀的层状结构,离子可以在面内某一特定方向有效移动。”使用陶瓷纸作电极的电池也因此能够快速充电,但在高电流密度时同样会快速放电。工业上人们对在可充电电池中使用陶瓷纸这一方法已经是非常感兴趣的了。
此外,陶瓷纸的调节离子能力在其他领域也很吸引人。五氧化二钒中的电子由于分子间作用力可以更好的移动,它也适用于气体传感器。由于氧化钒的原子核较小,只有几微米,仪器就可以更小了。另外,纳米纸能够使人工肌肉具有活性。当外来离子在陶瓷纸中聚集时,陶瓷纸会扩张。作为由插入颗粒控制的驱动器,陶瓷纸可以推拉微观尺寸的对象。 |
|