在1950到1970年代的三十年间,用果蝇遗传研究发育的科学家是加州理工学院的Ed Lewis (1918-2004)。Lewis在明尼苏达大学念本科时遗传学老师CPOliver是Hermann Joseph Muller的学生,而Muller是Morgan的学生。Lewis到加州理工跟Morgan的另一位学生Sturtevant做研究生、于1942年获博士。他用果蝇研究了多个问题,而最为人所知的是果蝇发育。
他们在筛选第二号染色体后,继续筛选了第3号染色体、X染色体(第一号)和比较小的第四号染色体,寻找影响果蝇幼虫表皮发育的基因,共发现了约130个基因(Nüsslein-Volhard,Wieschaus and Kluding,1984;Wieschaus,Nüsslein-Volhard and Jürgens,1984),一系列文章发表于德国的发育生物学刊物:RouxArchive of Developmental Biology,以德国实验胚胎学家Roux命名,原为德文的杂志、这时已改用英文。
Stanford大学的David Hogness(1925-)首先提出现在所谓的基因组分析。他从1950年代到1960年代研究噬菌体的分子生物学和生物化学。1968年,在噬菌体热潮中领先的Hogness决定到美国的Lewis、澳大利亚和德国的三个果蝇实验室学术休假,学习果蝇和多线染色体。1972年,在他的研究经费申请中,他提出要将果蝇染色体的所有DNA分成有重叠的片段,用噬菌体装到细菌中,建成果蝇的基因组DNA文库(genomic DNA library),通过遗传表型和基因定位找到突变的基因(后来称为位置克隆,positional cloning)。
回过头来看,在多细胞生物中克隆基因,果蝇相对比较容易。一是可以从已经克隆的基因,利用染色体的突变(包括inversion、deletion等),在染色体上行走(甚至跳跃)(Bender, Spierer and Hogness,1983),直至目的基因;如果没有物理位置近的基因,也可以直接利用唾液腺的多线染色体的粗大,在遗传定位了基因的大体位置后,用小刀从多线染色体上切下一段,克隆后再进一步找目的基因。用刀切染色体DNA只能在果蝇,而不能在其他常用实验生物实现。拿到DNA后,可以制备标记的探针对唾液腺多线染色体进行原位杂交,确定得到的DNA是否确实在遗传预计的染色体部位,这也是果蝇的优点。
Hogness提出研究果蝇基因组一年后,1973年旧金山加州大学的Hebert Boyer和斯坦福大学的Stanley Cohen才发明大家常用的重组DNA技术。1974年Hogness实验室用质粒将果蝇的DNA克隆到细菌中(Wensinket al., 1974),1978年当时在加州理工的Tom Maniatis(1943-)等将果蝇、丝蚕和家兔的基因组DNA分别剪切后装入噬菌体载体,制备了三个基因组文库(Maniatis et al., 1978)。Hogness实验室1978年克隆了BX-C的DNA、1979年确定Ubx基因、结果于1980年在斯坦福大学医学院生化系的学术会议上展出,但直到1983年才正式发表克隆双胸复合体DNA的文章(Bender et al., 1983a),同年Hogness实验室与Lewis合作报道BX-C遗传突变在DNA的改变,从而将BX-C中特定基因与已有遗传突变联系起来(Bender et al.,1983b)。Hogness实验室在几篇摘要中报道他们确定了BX-C编码Ubx mRNA的部分,其博士后Akam回英国剑桥后于1983年报道用原位杂交观察到Ubx的mRNA确实在第三期幼虫表达于可以预计的区域(T3和腹节段的成虫盘,imaginaldiscs)(Akam, 1983a, 1983b)。Ubx基因较长,基因组DNA有七十多kb(千碱基对),而转录多个mRNA,Hogness实验室一时未发表其编码的蛋白质序列。
1983年,美国印第安纳大学Kaufman和瑞士巴塞尔大学生物中心的Gehring两个实验室报道克隆了ANT-C(Scott et al., 1983; Garber, Kuroiwa and Gehring, 1983)。在克隆基因组DNA的过程中,这两个实验室都用了Hogness实验室发明的染色体行走方法。1984年,William McGinnis、Michael Levine、Ernest Hafen、Atsushi Kuroiwa和Walter Gehring等五位作者于3月,Mathew Scott和AmyWeiner两位作者于7月分别发表文章,独立发现ANT-C与BX-C编码的mRNA之间有相似的核苷酸序列,而且另外一些基因也含有这一序列(McGinnis et al., 1984a;Scott andWeiner, 1984)。这一核酸序列编码约60个氨基酸(Scott and Weiner, 1984),被称为同源异形盒(homeobox)(McGinnis et al., 1984b)。同源异形盒编码的蛋白质区域称为同源异形域(homeodomain)。Gehring实验室发现果蝇同源异形域的序列与酵母的交配型位点基因a1和a2(MAT a1、a2)相似(Shepherd et al., 1984),而已知这些基因编码的蛋白质在酵母中控制其他基因的转录。Laughon 和Scott(1984)发现果蝇同源异形域还相似于细菌的DNA结合蛋白:l抑制子(l repressor)。而以哈佛大学MarkPtashne为代表的分子生物学家到那时已较多研究过l抑制子,知道它如何结合DNA而调节其他基因的转录,l抑制子当时是基因表达调控的最佳范例(Ptashne,1986)。同源异形域被预计相似于l抑制子的五个a螺旋中的螺旋2和螺旋3,其间一个b转折,亦称螺旋-转-螺旋(helix-turn-helix),而a螺旋3已知为l抑制子识别DNA的部分。以后结构生物学通过X衍射分析同源异形域有一个N端臂(N terminalarm)和三个a螺旋,其中a螺旋3确实与l抑制子的a螺旋3一样嵌入DNA的大沟(major groove)与磷酸和碱基都有作用,而N端臂也与DNA有结合。控制果蝇发育的基因编码的同源异形域含有l抑制子中被证明为结合DNA的序列,自然立即提示同源异形域能结合DNA。旧金山加州大学(UCSF)的Tom Kornberg和Patrick O’Farrell合作克隆到engrailed基因后(Kuner et al., 1985),也发现其cDNA编码的蛋白质含同源异形域(Poole et al., 1985)。O’Farrell实验室的法裔科学家Claude Desplan等实验证明果蝇的同源异形域能结合特异的DNA序列(Desplan et al., 1985),包括engrailed基因本身的上游序列,从而提示可以调节基因表达。而Gehring实验室日本科学家Yasushi Hiromi克隆调节发育的基因fushitarazu(ftz)的上游序列,将此序列于ftz基因编码蛋白质的部分分开,而放到编码细菌lacZ的基因上游,制造融合基因(Hiromiand Gehring,1985): ftz上游-lacZ编码部分。然后通过转基因将此融合基因导入果蝇,发现lacZ基因编码的蛋白质在果蝇胚胎表达的模式与果蝇内源的ftz基因很相像,证明控制发育的基因其非蛋白质编码的上游序列确实能够控制编码蛋白质部分的基因之表达。
Lewis认为BX-C含有多个基因,他的工作与后人的分析BX-C突变有9类(abx/bx、bxd/pbx、iab-2、iab-3、iab-4、iab-5、iab-6、iab-7、iab-8,9)。Sanchez-Herrero等(1985)和Tiong等(1985)用发现有三个编码蛋白质的基因(Ubx、abdA、AbdB)。这三个蛋白质都含同源异形域。遗传分析发现,同时缺失这三个基因的表型等同于缺失整个BX-C。BX-C区域DNA完全测序后也证实只有这三个编码蛋白质的基因,其他DNA片段是调节编码蛋白质的基因(Martin et al.,1995; Maeda and Karch,2006)。
除了研究AP轴,Nüsslein-Volhard和Wieschaus的筛选中还发现了影响了背腹轴(DV axis)的基因(Nüsslein-Volhard et al.,1980)。Nüsslein-Volhard实验室的美国博士后Kathryn Anderson等进一步研究和分析了DV轴形成(Anderson and Nüsslein-Volhard, 1984)。他们和其他实验室的一系列研究结果可以总结为:母性效应的几个基因导致相对于胚胎腹侧的母体细胞分泌较多、且加工成熟的蛋白质,它激活胚胎细胞膜的Toll受体,触发细胞内Tube蛋白质、激活Pelle蛋白激酶,使Cactus蛋白质脱离Dorsal蛋白质,最终胚胎腹侧的转录因子Dorsal蛋白较多,形成从腹侧到背侧由高而低的浓度梯度,Dorsal蛋白质再通过浓度依赖性调节其他基因的表达,确定腹侧到背侧形成不同的细胞命运。
果蝇研究的突破很快推动人们发现果蝇基因在高等动物的同源基因(homologs and orthologs)。同源异形盒发现后,Gehring实验室很快就知道它不限于果蝇,而且存在于包括人在内的其他生物(McGinnis et al., 1984b;Shepherd et al., 1984)。很多实验室研究高等动物含同源异形域的蛋白质,发现进化保守的Hox基因家族,它们分别形成基因复合体,而且在Hox复合体中不同基因的位置与其控制身体位置也有线性相关,提示证明Lewis的工作有很重要的意义,虽然今天还不能说我们已经理解了共线性规律的基本原理。
最初在果蝇中发现控制发育的基因,如同源异形盒的基因,近二十年多来不断发现其相应的人类基因参与疾病。比如一些Hox基因的突变导致外国和中国人群发生多种疾病(如:Muragaki et al.,1996; Mortlock and Innis,1997; Tischfield et al.,2005; Zhao et al.,2007; Webb et al.,2012 ; Lin et al.,2012)。
果蝇研究提示了人工制造器官的可能性。摩尔根实验室很早发现果蝇第四号染色体上eyeless突变,其后果是眼睛很小。当时在Carnegie Institute of Washington的Rubin和Alan Spradling (1982)发现了P转座子,建立了果蝇的转基因技术。1995年,Gerhing实验室通过转基因技术将eyeless基因表达到身体其他部位(如翅膀、腿、触角),发现可以形成异位的眼睛(Halder, Callaerts and Gehring,1995),单个基因如此的开关作用令人感叹。高等动物eyeless基因的同源基因称Pax6,其缺失导致小鼠眼睛减小、人眼睛的虹膜缺失。在原理上,通过Pax6的研究,很大程度修改了以前认为眼睛在演化中出现四十多次而毫无保守机理的想法,认识到虽然完整的眼睛确实多次独立演化而成,但感光结构的前体可能有共同的分子机理。不过在应用上,未能通过单独表达Pax6基因、或几个基因诱导产生高等动物的眼睛,迄今不明能否用这一途径人工制造器官。
Nüsslein-Volhard C and Wieschaus E (1980). Mutations affectingsegment number and polarity in Drosophila. Nature287:795–801.
感谢Yale大学林海凡、许田,Stanford大学骆利群的反馈意见。
文献
Akam ME (1983a). Decoding the Drosophila complexes. TrendsBiochem 8:173-177.
Akam ME (1983b). The location of Ultrabithorax transcripts in Drosophila tissue
sections. EMBO J2:2075–2084.
AndersonKV, Nüsslein-Volhard C (1984). Informationfor the dorsal-ventral pattern of the Drosophila embryo is stored as maternalmRNA. Nature 311: 223–227.
Balkashina EI (1929). Ein Fall der Ein Fall derErbhomoosis (die Genovariation “Aristopedia”) bei Drosophila melanogaster. Archf EntwMech 115:448-463.
Bateson WH (1894). Materials for the study of variation, treatedwith especial regard to discontinuity in the origin of species. Macmillan,London.
Braun W (1939). An experimental attack on some problems ofphysiological genetics. Nature144:114-115.
Bender W, Spierer P, and Hogness DS (1983a). Chromosomal walkingand jumping to isolate DNA from the Ace and rosy loci and the bithorax complexin Drosophila melanogaster. J Mol Biol168:17–33.
Bender W, Akam M, Karch F, Beachy PA, Peifer M, Spierer P, LewisEB, Hogness DS (1983b). Molecular genetics of the Bithorax complex inDrosophila melanogaster. Science 221:23–29.
Benzer S (1957). The elementary units of heredity, pp. 70–93 inThe Chemical Basis of Heredity, edited by W. D. McElroy and B. Glass. JohnsHopkins Press, Baltimore
Benzer S (1959). On the topology of the genetic fine structure.Proc. Natl. Acad. Sci. USA 45:1607-1620.
Bridges CB, and Morgan TH (1923). The thirdchromosome group of mutant characters of Drosophila melanogaster. Carnegie Inst. Washington 327:93.
Bridges CB and Dobzhansky Th (1933). The mutant “proboscipedia”in Drosophila melanogaster –a case ofhereditary . Arch f EntwMech127:575-590.
Bryant PJ (1993) The polar coordinate model goes molecular. Science 259:471–472.
Crick FHC and Lawrence PA (1975). Compartments and polycones ininsect development. Science189:340-347.
Desplan C, Theis J, O’Farrell PH (1985). The Drosophiladevelopmental gene, engrailed, encodes a sequence-specific DNA bindingactivity. Nature 318:630-635.
Duncan I and Montgomery G (2002a). E. B. Lewis and the bithoraxcomplex. Part I. Genetics160:1265–1272.
Duncan I and Montgomery G (2002b). E. B. Lewis and the bithoraxcomplex. Part II. Genetics 161:1–10.
Garber RL, Kuroiwa A and WJ Gehring WJ (1983).Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila.EMBO J. 2:2027–2036.
Garcia-Bellido A, Santamaria P (1972). Developmental analysis ofthe wing disc in the mutant engrailed of Drosophila melanogaster. Genetics 72: 87–101.
Garcia-Bellido A (1975). Genetic control of wing discdevelopment in Drosophila, pp. 161–182 in Ciba Found. Symp. 29, CellPatterning.
Garcia-Bellido A, Ripoll P, Morata G (1976). Developmentalcompartmentalization in the dorsal mesothoracic disc of Drosophilamelanogaster. Dev Biol 48: 132–147
Halder G, Callaerts P, and Gehring WJ (1995). Induction ofectopic eyes by targeted expression of the eyeless gene in Drosophila. Science267:1788-1792.
Hiromi Y, Kuroiwa A, Gehring WJ (1985). Control elements of theDrosophila segmentation gene fushi tarazu.Cell 43:603-613.
Jacob F and Monod J (1961a). Genetic regulatorymechanisms in the synthesis of proteins. JMol Biol 3:318–356.
Jacob F and Monod J (1961b). On the regulation of geneactivity. Cold Spring Harbor Symp. Quant.Biol. 26:193–211.
Jürgens G, Wieschaus E, Nüsslein-Volhard C, and Kluding H (1984).Mutations affecting the pattern of the larval cuticle in Drosophilamelanogaster II: Zygotic loci on the third chromosome. Wilh. Roux’s Arch. 193:283–295.
Kaufman TC, Lewis R and B Wakimoto (1980). Cytogeneticanalysis of chromosome 3 in Drosophila melanogaster: the homeoticgene complex in polytene interval 84A-B. Genetics94:115–133.
Kuner JM, Nakanishi M, Ali Z, Drees B, Gustavson E, TheisJ, Kauver L, Kornberg T, and O’Farrell PH (1985). Molecular cloning ofengrailed: a gene involved in the development of pattern in Drosophilamelanogaster. Cell 42:309-316.
Laughon A, Scott MP (1984). Sequence of a Drosophila segmentationgene: protein structure homology with DNA-binding proteins. Nature 310:25-31.
Lewis EB (1951). Pseudoallelism and gene evolution. Cold Spring Harbor Symp. Quant. Biol.16: 159–174.
Lewis EB (1955). Some aspects of position pseudoallelism. Amer Nat 89:73-89.
Lewis EB (1963). Genes and developmental pathways. Am Zool 3:33–56.
Lewis EB (1964). Genetic control and regulation ofdevelopmental pathways, pp. 231–252 in Role of Chromosomes in Development,edited by M. Locke. Academic Press, New York.
Lewis EB, and Bacher F (1968). Methods offeeding ethylmethane sulfonate (EMS) to Drosophila males. Dros. Inf. Serv. 43:193.
Lewis EB (1978). A gene complex controlling segmentationin Drosophila. Nature 276:565–570.
Lin Z, Chen Q, Shi L, Lee M, Giehl KA, Tang Z, Wang H, Zhang J,Yin J, Wu L, Xiao R, Liu X, Dai L, ZhuX, Li R, Betz RC, Zhang X, Yang Y (2012). Loss-of-function Mutations in HOXC13 CausePure Hair and Nail Ectodermal Dysplasia. AmJ Hum Genet 91:906-11.
Maeda RK and Karch F (2006). TheABC of the BX-C: the bithorax complex explained. Development 133:1314-1422.
Maniatis T, Hardison RC, Lacy E,Lauer J, O’Connell C, Quon D,Sim GK, Efstratiadis A (1978). The isolation of structural genes from librariesof eucaryotic DNA. Cell 15:687-701.
Martin CH, Mayeda CA, Davis CA, Ericsson CL, Knafels JD, MathogD R, Celniker SE, Lewis EB and Palazzolo MJ (1995). Complete sequence of thebithorax complex of Drosophila. Proc.Natl. Acad. Sci. USA 92, 8398-8402.
McGinnis, W., M. Levine, E. Hafen, A.Kuroiwa and W. J. Gehring (1984a). A conserved DNA sequence in homeotic genesof the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433.
McGinnis W, Garber R, Wirz J, Kuroiwa A andGehring WJ (1984b). A homologous protein-coding sequence in Drosophila homeoticgenes and its conservation in other metazoans. Cell 37:403–408.
Meyerowitz EM and Pruitt RE (1985). Arabidopsis thaliana and plant moleculargenetics. Science 229:1214-1218.
Muragaki Y, Mundlos S, Upton J, Olsen BR (1996). Altered growthand branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272:548-551.
Nüsslein-Volhard C and Wieschaus E (1980). Mutations affectingsegment number and polarity in Drosophila. Nature287:795–801.
Nüsslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C (1980).A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant ofDrosophila. Nature 283:474–6.
Nüsslein-Volhard C, Wieschaus E, and Kluding H (1984). Mutationsaffecting the pattern of the larval cuticle in Drosophila melanogaster I:Zygotic loci on the second chromosome. Wilh.Roux’s Arch. 193:267–282.
Poole SJ, Kauvar LM, Drees B, Kornberg T (1985). The engrailedlocus of Drosophila: structural analysis of an embryonic transcript. Cell 40:37-43.
Postlethwait JH, Schneiderman HA (1969). A clonal analysis ofdetermination in Antennapedia a homoeotic mutant of Drosophila melanogaster. Proc Natl Acad Sci 64:176-83.
Postlethwait JH, Schneiderman HA (1971). Pattern formation anddetermination in the antenna of the homoeotic mutant Antennapedia of Drosophilamelanogaster. Dev Biol 25:606–640.
Poulson DF (1937). Chromosomal deficiencies and the embryonicdevelopment of Drosophila Melanogaster. Proc.Natl. Acad. Sci. 23:133-137.
Poulson DF (1940). The effects of certain X-chromosomedeficiencies on the embryonic development of Drosophila melanogaster. J. Exp. Zool. 83:271–335.
Poulson DF (1950). Histogenesis, organogenesis, anddifferentiation in the embryo of Drosophila melanogaster meigen, pp. 168–274 inDemerec M ed, Biology of Drosophila, John Wiley and Sons.
Ptashne M (1986). A genetic switch: gene control and phagelambda. Blackwell, Boston.
Rubin GM, Spradling AC (1982). Genetic transformation ofDrosophila with transposable element vectors. Science 218:348-53.
Sanchez-Herrero E, Vernos I, Marco R and Morata G (1985).Genetic organization of Drosophila bithorax complex. Nature 313, 108-113.
Scott, M. P., A. J. Weiner, T. Hazelrigg, B. A. Polisky,V. Pirrotta, Scalenghe F, Kaufman TC (1983). The molecular organization of theAntennapedia locus of Drosophila. Cell35:763–776.
Scott, MP, and AJ Weiner (1984). Structuralrelationships among genes that control development: sequence homology betweenthe Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. USA 81:4115–4119.
Shepherd JCW, McGinnis W, Carrasco AE, DeRobertis EM, Gehring WJ(1984). Fly and frog homoeo domain show homologies with yeast mating typeregulator proteins. Nature 310:70–71.
Tiong S, Bone LM and Whittle JR (1985). Recessive lethalmutations within the bithorax-complex in Drosophila. Mol Gen Genet 200:335-342.
Webb BD, Shaaban S, Gaspar H, Cunha LF, Schubert CR, Hao K,Robson CD, Chan WM, Andrews C, Mackinnon S, et al. (2012). HOXB1 FounderMutation in Humans Recapitulates the Phenotype of Hoxb1(-/-) Mice. Am. J. Hum. Genet. 91:171-179.
Wensink PC, Finnegan DJ, Donaldson JE, Hogness DS (1974). Asystem for mapping DNA sequences in the chromosomes of Drosophila melanogaster.Cell 3:315-325.
Wieschaus E, Nüsslein-Volhard C, and Jürgens G (1984) Mutationsaffecting the pattern of the larval cuticle in Drosophila melanogaster III:Zygotic loci on the X-chromosome and fourth chromosome. Wilh. Roux’s Arch. 193:296–308.
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, MeyerowitzEM (1990). The protein encoded by the Arabidopsis homeotic gene agamousresembles transcription factors. Nature346:35-39.
Zhao X, Sun M, Zhao J, Leyva JA, Zhu H, Yang W, Zeng X, Ao Y,Liu Q, Liu G, et al. (2007). Mutations in HOXD13 underlie syndactyly type V anda novel brachydactyly-syndactyly syndrome. Am.J. Hum. Genet. 80:361-371.
2013年发表于《中国科学生命科学》
Rao Y(2013) Genetic control of development: the discovery of homeobox. Scientia Sinica Vitae 43, doi:10.1360/052013-180